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Considered is & problem of optimum control under the condition of minimum
expected decay time of a transient process. A method is described for
applying the Liapunov function to this problem [ 1,2 ]. Assumed statement
of the problem is generalized to include some problems of optimum appli-
cation of high speed action on systems subject to random disturbances.
Discussed are approximate methods for synthesizing optimum control.

Author notes that he discussed the theme of this work and the methods
of solution of the considered problems with N.G. Chetaev who gave him a
number of valuable suggestions. Especially, detailed remarks were made
by Chetaev regarding the application of the Liapunov function to the
problems of the investigated systems subject to random disturbances.

1. Statement of problem. Let us consider the system described by
the equations
i:f

tdt=A:1r;-1—Bu—i—c"n (1.1

where x is an n-dimensional vector of phase coordinates of the system,

A, B are n x n-matrices, n(t) is a random scalar function, u is the n-

dimensional control vector. For the given initial conditions Xy, Mgs ty
it is required to derive the rule for choosing control u° which ensures
minimum time of decay for the transient process x(xy, n,, ty, t, 7, u)

in system (1.1). Depending upon the character of information about the
process action, several versions of formulation are possible.

Let us denote by g(9) the realization of the random function n(t) for
t < < t. A great number (almost all) realizations g(8) we shall de-
note by Q(t).

Definition 1.1. Let us consider the operators ult, g ] which compare
(for fixed t > t,)with g(8) the vectors u. The totality U, of operators
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ul t, g1 (ty< t <o, g= Q(t) we shall call t-control.

Vector-function u(x, 5, t) = U, which compares (for fixed t) with
vectors x & G and numbers & H the vectors u, we shall call z-control
in the region G x H.

Let us denote
lyl= @+ -+ y )" lyle = @2+. ..+ y))"

Definition 1.2. Let there be given a number ¢ > 0, a natural number
k < n and the initial conditions Xgs Ngs tge Let us agree to call U;
(t-control) ¢-permissible on {x,, ..., x}} for the initial condlt.lons
xy, Mgs ty, if these conditions are satisfied:

1) norm ||u|| satisfies inequality

lult, glI<1,  tE(ty,), geEQ (1.2)
2) inequality
T [Uh k” 81 xov 7]07 to] = S P [Uh k! g, x()? nov to: t] dt < oo (1'3)
i

is satisfied, where the symbol pl U,, k, €, x5, n,, t,, t] denotes the
probability of inequality

"x(xo’ 7107 to’ t9 ‘nl u) "k >¢€ (1.4)

for t » t, along the random solution x(t) of system (L.1), caused by the
random funct;lons r](t) and u(t) = ul t, 7(8)]. The set of ¢-permissible
t-controls (for given conditions k, ¢, x,, 7y, t,) we shall denote by
Mt[ k, €, zy, ny, t, 1.

The meaning of Definition 1.2 is as follows: ¢-permissible t-control
(totality U, of operators u[t, g]) determines the rule for choosing
the u(t) control on the basis of information about realization g(8) of a
random function (t) for ty < ¥ < t, whereupon this control ensures the
decay of the transient process accordmg to || x(¢) ]|, up to e > 0 with
probability arbitrarily close to unity for sufficiently large t¢.

Definition 1.3. Let there be given a number ¢ > 0, a natural number
k < n, regions Gy and G of the phase-space { x} and a set of numbers H.
Function U_, the z-control in the region G x H, we shall call ¢-permis-
sible on { xl, «++, %3} for initial disturbances x, from region G,, if
the following conditions are fulfilled:

1) function 5(¢t) may take values only from H for all realizations
g s Qle), ty< t < w;
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2) solutions of system 1.1 (for u = ul x, #, t]) with the initial
conditions x, & G, for all realizations 7 = g(3) remain in region G for
t 3 ty,

3) norm || u|| satisfies condition
lulz, 3, I, =G, wm<H, >t (1.5)

4) inequality (1.3) is fulfilled (where U, is replaced by U,) for all
zg€= Gy, n & H, whereupon the trajectory x{(xy, 14, tg, t, 7, u) is
caused by the control u(t) = u(x(t), (¢), t).

The set of ¢-permissible x-controls we shall denote by Mx[ k, ¢, G,
Gl.

(Notes 1.1. In those cases where there can be no misunderstanding we
shall use ahbreviated terms and notations, omitting complementary
characteristics (e.g. permissible control instead of ¢ -permissible t-
control, T[ U] instead of TIU,, k, ¢, x4, 7y, t5 ] etec.).

1.2. Admissibility conditions for Ut(or Ux) must include a require-
ment for the existence of solutions of system (1.1) for u(t) = ult, g]
or u=ulx 7, t] for almost all realizations n = g(9). In the follow-
ing, a class of functions g(9) of a fairly general nature (discontinuous
and 8-functions g(9)) are sometimes permitted. Accordingly, we shall
consider as solutions x(t) also functions of a fairly general nature,
the class of which we do not limit in the formulation of the problem.
Therefore, in Definitions 1.2, 1.3 the requirement for existence of
solutions is not stated even where it is necessary, and must be invest-
igated separately, depending on the permissible class of solutions. For
the same reason the proofs presented are not too rigorous assuming that,
since each time the class of functions p(t) and x(t) is investigated,
the appropriate calculations can be substantiated.

1.3. Let us assume (unless stated otherwise) that for each realization
7 = g(9) the process of control is terminated at that moment t = t, [g ]
when the point on the corresponding trajectory z(t) falls for the first
time on the surface || z|| ;= ¢. Therefore, in the following one can form-
ally assume that for such realizations equalities g(t) = 0, u(t) = 0,
2(t) = 0 are fulfilled for t > t, [ g ] and the quantity p[ ¢ = p[ U,
k, €, %gs Mg tgr t] is a monotonic non-increasing function of time ¢

for all ¢ » to.

1.4. Definitions 1.2 and 1.3 include also the case of transfering
z(t) into the ¢ -neighborhood of the surface l;x; + ... + l"xn =0, if in
system (1.1) we replace the variables { x;} > { y;} (whereupon y, = Iz, +
eee + l x.) and insert Definitions 1.2, 1.3 k= 1.)
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Definition 1.4. The permissible control U° (U° or U;?) we shall call
optimum if

T[U° = min (T{{U] tor U< M) (1.6)

In this article the term "optimum problem® is understood as the
problem of determining the minimum of (1.6). This problem belongs to the
class of problems in optimum control in the presence of a random signal
at the system input [ 5,6 ]; here, however, we have some characteristic
peculiarities connected with the nonlinearity of operators ufl x, 3, t],
ul t, gl and also the fact that the problem is essentially nonstationary.*

(Notes 1.5. The problem is obviously generalized for the case of

minimizing the functional
[s ]

Q1= pU, k, & o, m0, to, 1 LIz (1), n (] at
t
1.6. Investigated analogous problems may be formulated for the case
of fastest transfer of the x(t) trajectory into € -neighborhood of a

random motion x; = p,(¢) (i=1, ..., n).

1.7. Unless stated otherwise, we shall consider only random functions
n(t) describing a random (Markov) process without consequences (7 ].)

2. The problem of the existence of optimum contrel. We shall
prove the existence of optimum control US for a particular case of
system (1.1). Given an equation

2 - a2y 4.+ anzy = g (1) + 7 (2) 2.1y

vwhere the function 5(¢) describes a random process of the following type:
n(t) is constant 3 = 7,{l=1, ..., ») on each semi-interval krg< t <

( + l)ro (r°> 0- const, k=0, 1, ...), the probabilities of transfer
nj M for t = kr, are constants ﬁjl' and also

n<g<t  (=1,...,m) (2.2)
Unless otherwise stated, everywhere in the following it is assumed
that the roots A (i = 1, ..., n) of the characteristic equation
|A—XE|7T=0
satisfy the inequality
Reh < —3 (3 > 0 — const) (2.3)

It should be noted that the problems of optimum control in the pre-
sence of random disturbances are treated somewhat differently in
References [ 17-18 ].
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The optimum problem for Equation (2.1) at k=n, ¢ = 0 (x; = x, (- 1),
i # 1) and for the conditions (2.2) and (2.3) we shall call problem A.

Lemma 2.1. For problem A there exists a permissible control U, regard-
less of the initial conditions Zgr Ngs tge

(Note 2.1. As permissible realizations u(t) of control ul ¢, g1 we
shall consider in the present section piece-wise smooth functions, per-
mitting only discontinuities of the first kind at isolated values of ¢,
a&s permissible solutions x(¢)-continuous functions, satisfying Equation
(2.1) for all ¢ different from points of discontinuity n(t¢) and s(t).)

Proof of lemma. According to References [8,9 ] for the problem of
optimum response for system (2.1) under conditions (2.3)5(¢) = 0 and
limitation

"u(t)“1<(1_q) (u{=0' ism2,...,n) (204)

there exists an optimum control u, = u,*(t), regardless of the initial
conditions x), t,. This control (piece-wise constant function u,*(¢))
brings the trajectory x(t) of Equation (2.1) to point x = 0 (x, = 0,

x; = xl(i“l) = 0) at some time t = ty + T*. Obviously, the operators

w[t7 g1={u1.(t)—g(t)1 LIRS | 0} tor to<t<to+T. (2.5)
ult, gl={—g®, 0,...,0} for t>T"+1¢

constitute the permissible control U,* whereby

TWw =1 (2.6)

Theorem 2.1. For problem A there exists an optimum control U, re-
gardless of the initial conditions xj, 74, t,.

Proof. Given are initial conditions x,, 5,4, t,, whereby with no loss
of generality t, &[0, ry]. According to Lemma 2.1 there exists a per-
missible control U,*. Let us consider a sequence of permissible controls
UM (k=12 ...), for vhich the following condition is satisfied

UuW®w =0, TUM > TWHY], tmT UM =T tor k- (2.7)

and there is no permissible control U, for which
TUN<T® (2.8)

We shall show that there is a permissible control U satisfying the
condition
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T [Utol = T® (2.9)

Let us denote by gl'(%) (r=12, cee, I=m, «o., ", 0K B< rro)
the realizations n(t), and by p;” probabilities of g;". Let us put in
order the set {g;"}. Now, let g;" precede g;»7 , if r"-> r; for fixed r,
realizations g,” are ordered definitely on I = 1, ..., a". Consider trip-
lets { g, u, T};" composed of numbers

Ty ((r— D1 <t +T7 <rry)
and fumctions .
glr (t)’ " (t) (to \Qt < to -+ Tl )

We shall state that the triplet {g, u, T};” belongs to Ut“), if
u,(t) = ult, g;"1 = u;"(¢) and the trajectory z(x,, 7, to t. ;"
ut t, gl"ll) falls for the first time on x = 0 for t = ¢t + T;". The set
of all triplets {g, u, T};" belonging to Ut“‘) we shall denote by Q.

Q, does not contain simultaneously two triplets {g, u, T};” and
tg, u, T};»" , where T’ > T and g;"(t) = g;-" (t) for ty < t< ty+ T,
Inequality
Zplr — i (2.10}
{k}
is valid where the sum is taken along all realizations g;” contained in
triplets { g, u, T};" & Q,. Also,

T {U?}} > pr?; for lim (Z per;) L T° tor k— oo (2.11)
&) (%)
Let us pass now to the construction of U,°. Based on the properties
of Q, sets we can derive a diagonal subsequence (for which we will use
the previous notation but renumbered) satisfying the following conditions

(1) There is a subsequence { g;"}, such that the first s terms of this
subsequence are contained in all triplets Q,, beginning with k = s.

(2) Equality

D opr=1 (2.12)
{ghx

is satisfied in which the sum is taken over all elements of the sequence
lg;"}; described in condition (1). (A case may arise when {g,"}, is finite,
and starting with some number s, all Qi contain a finite mmber of reali-
zations g,”. For this case, the following discissions are simplified.)

Let us denote by (u;"), control functions corresponding to g ;" from the
sequence { g;"}, in control U (B) | and by (Tl' )t the numbers T contained

in the appropriate triplets in Q. Utilising low density [10] of a unit
sphere in space L, of function u{t) (ty< t< sry, s=1, 2, ...) for
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fixed s, the limitation of each sequence (T)"), (k= 1, 2, ...), and re-
peating the arguments of Reference [4], one can derive a diagonal sub-
sequence { Q. } (for which again we shall use the old numeration) for
which the following condition is satisfied:

lim (Tlr)k = (Tlr)o for k- oo (213)

and the sequences (u l') g for k + o slowly converge towards the limiting
measurable functions (u,”)* on the intervals t < t < ty + (Tl")o. In
addition, from the condition (2.11) and (2.12), it follows that

2 (T, <I° (2.14)
{e}

A limited transfer along functions (u;"), slowly converging to (u;")*
is possible in integrals defining x(¢t) for system (2.1) according to the
Cauchy formula for inhomogeneous linear equations [ 11]. Therefore, the
trajectories x(¢t) of Equation (2.1) generated by the functions (u;")*
\(mder the corresponding g;"(t), arrive at the point z= 0 for t = ¢, +

T,"),.

This fact, together with conditions (2.12) and (2.14), proves that the
totality of operators u*[t, gl defined on realizations g;” from the sub-
sequence { g;"}, (as well as on segments g,"(9) (%€[¢), t],t< ¢t +(T;7),
of these realizations) which compare with these realizations the °func-
tions (u;7(t))* =u; for t < ty + (T}7)g and u = — 9(t) for t > t, +
(TI')° (u; = 0 for i £ 1), defines the control U;* for which

TWU =T (2.19)
The control U,* is defined only in the class of measurable functions
u(t) = u*l t, gl.

Now, for the proof of the theorem it is sufficient to show that there
exists a control US also satisfying (2.15) but already in the class of
the piece-wise continuous functions u(t) = u°[t, g1l.

For the proof of this assertion one should, based on the results of
Reference [9 ], substitute in turn on the intervals t, < t < rry (r = 1,
2, ...) for each realization gl'(t) the measurable functions (u,”(t))*
into the partially constant functions (u;"(t)°, | (u;"(¢))°| < [, which
after integration, according to the Cauchy formula for solutions (2.1),
on each interval, yields

P <t <(r'+1)%, (F+ D)5 <t<tH+ (T ¢'=0,...,(—2) (2.16)

the same result as the substituted functions. The existence of such
partially constant functions follows from the solubility of correspond-
ing L problems [12 ] on intervals (2.16) in partly constant functions
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(ul’(t))°, if these problems are soluble in measurable limited functions
(u;7(¢t)* on the same intervals. The theorem is proved.

(Note 2.2. Analogously, based on the lemma from Reference [131 ¢p.
575) one can prove the existence of optimum control Ut° for which the
control functions assume only two values u = +1 and u = ~1.)

3. Necessary conditions of optimal control. In this section
the necessary conditions are derived optimising U, for a problem similar
to A. This problem is "smoothed® by introduction of an additional random
quantity £ with a small dispersion o2. The conditions for optimization
of A can be obtained for the optimization conditions for this problem by
letting ¢ » 0 and 02 » 0; substantiation of this limiting transfer is,
however, beyond the scope of the present discussion. Note that the
analogous introduction of ¢ may be applied for derivation of optimiza-
tion conditions in a stable system in the absence of the random disturb-
ance n(t), i.e. for the ordinary problem of high speed response. Consider
the equation

2, 4 @z 4 . Gnzy = u (1) + 1 () + B (2 —1,) (3.9)

(z; = :cl(i"l); i=1,...,n)

where ¢ is a random independent quantity with a normal distribution
M{EY = 0, M{ €} = o2 (here and in the following the symbol M{al de-
notes the mathematical expectancy of a). For Equation (3.1) we shall
consider the following problem in optimization:

Problem B. It is required to determine the optimum ¢ -permissible ¢-
control U{w[t, g]l} on the coordinate x; under the condition that in
the control process the value of the random quantity ¢ remains unknown,
and consequently, as in Definitions 1.2 and 1.4, the control u®[t, gl
is based only on the information about realization g(9) of a random
function n(t) for9 < t (np(¢) function is described in Section 2).

In the present section we shall assume that for all realizations g
the operators u®[ ¢, gl are defined for all ¢ » ty. Renumerate, con-
sequently, the realizations g(#) in each of the intervals

et (r+4 1), (r=0,4,...) (3.2)

as follows. In each interval 0 <& < r, let all realizations n = g(3) be
renumerated by indices l, = 1, ..., » and denoted by g; (8), and corres-
ponding probabilities denoted by p;,. Each g;,(®) genergt:es in the in-
terval r ) < 8 < 2r, m-realizations 5 = g(8) which we will denote by the
symbols g;4;,(8) (Ig =1, ..., m; I; = 1, ..., m). By induction let us
renumerate g%w‘}) in all intervals of (3.2). Let the initial value be
t,€[ 0, ry) and 9y = E1y° (ty), then the probability
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plUY, 1, €, x5, ny, t,, t1=p(t)

of inequality | x,(xy, 7y, to, t, 7, u)|> € for t€(rry, (r+ Dr,)
in the given case is calculated from

(3.3)

€

pli= 2 . (1 —{ @0 7r) lexp —C—C ULy, Lo b, 17 207 ()71

(leealyp) e

where the summation is overall I,, ..., L, (lj =1, ..., m) for fixed

ly", and the quantitiesy and {[1,", 1,, ...,"l_, t] are determined by
the equalities )

1 () = o*hun® (1 —1,) (3.4)
Sl el = 2 oy (E— 1) 250 + (3.5)
r o (k+1)7, a
+ 2§ e (=18, g1, + G101, (B)] 49 +
k=1 jx,

+

t

+ S ham (¢ — 9) [2°19, @i, 1 + Ervt,.t, (B)] 49

rt,

hin (8 — B [w® [, g1,] + g1y (B)] Y +

a s A

In the equalities (3.4) and (3.5) functions h;.(t) are the elements
of the fundemental matrix of solutions for the homogeneous system (3.1)

(h;;(ty) =8, j)' Thus the optimal problem B is reduced to minimization
of the functional

T [u] = S plt]dt = min (3.6)
t,

where the probability p[t] is determined by the equalities (3.3) to
(3.5). This problem can be solved by the usual methods of variational
calculus. In particular, let Sult¢,gl] be the variation of control ult, el,
permissible under condition (1.2), equal to zero for all realizations
g(8) except the marked realization g*(8) for which it is also equal to
zero everywhere except at some small interval (¢t* — a, t* + a), located
fully inside the interval rr < ¢t < (r + 1)r,. At the same time we shall
assume that in the described numeration sbove the segment g*(9) in in-
terval & € (rro, (r + 1)r,) is denoted by gyzy5 -+- 1,% Then the sign

of the variation 8 T will be defined by the sign of the expression
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/("}y sign du, (') = 3.7

{r+1)7,

— sign du, (t')[ S Pt U oo b ) iy (8 — t°) dt +-
t.

(o] (k’tl)‘\'u

+ 2 Z Pl g, WF s by by« o lat) Byn(t—1°) dt]
Je==r<-1 kT, (lr+l """ L)

where —1

FU b gy s bt

(3.8)
X § exp

—'(C - t [10’9 ey lr't lr..{.’_r 3y lk' l])’
27 (1)

=8y seee s by rgiyen Ly 11

forkrg<t<(k+ r,.

Let us consider function. f(¢*), defined by the equality (3.7). For
interpretation of this function let us consider the system (1.1) which
is equivalent to Equation (2.1), where consequently x = {xy, vony )=

tz;, ..., xl("'li:
0 1 0 . 0 00 . 0
0 0 1 0 00 . 0
A: .......... B B.‘: ..... 0
0 0 0 . 1 0 0...0
—a, —a6, , 0 . —ay 1 0,..0

According to known properties of linear systems, [ 11 ] functions

hy;(¢ - t*) (i =1, ..., n) of argument t* constitute a particular solu-
tion of the system

d/dt* = — A% 3.9)

comparable to system (1.1) (4* is the transposed matrix A4). Consequently,
function h; (¢ ~ t*) may be considered a scalar product of the solution
vector { h, i’(t ~ t*)} and the vector b is the first colwm of matrix B.
Applying the rules for differentiation of integrals in (3.7) with respect
to t* and taking into consideration the conditions h, (0) = 0, h,(0) = 1
for 1 £ 1, we verify that the function f(t*) may be considered as a scalar
product f(¢*) = (b x ¢(¢*)), where y(t*) is the solution of the system

D=—A44+d@,  dO={—pF@).0,...,0 (3.10)

When T[ u°] is minimum, the variation should not be negative, con-
sequently the following fact may be established.
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Theorem 3.1. At each interval k7, < t < (k+ 1) r; the optimum con-
trol u[t, g] for each g(%) in problem B satisfies the condition: the
operator u®[¢, g1 is such that the quantity

—u’[L, gl f 1t = —us° (¢, g} (b- ¢ (1)) = max 3.11)

where y/(t) is the solution of system (3.10) (for t = t*).

(Note 3.1. Condition (3.11) corresponds in the case considered to the
principle of maximum [4 ].)

In passing from one realization to another and in passing through the
critical values t = k7, the solutions ¥(t) (3.9), defining according
to (3.10) and (3.11) the optimum control u [¢t, g1, deviate. However, one
can see from formulas (3.3) to (3.8) that the deviations of y¥(¢) in
passing through the point ¢ = k r; are subject to the rule of discontin-
uity: let ¢1o, e, lk’(t) (the defining solution on Blg’ ... 13” for t

in the interval (kr,, (k+ 1) r ) and ¢lo'w L, lk+-1(t)) be the

defining solutions on 81y, for t in the interval

ceay lk'lk.,_l
((k+ 1) ry (k+ 2)r,); then the following equality holds*

m G @)= 2 Py Im @iy, @) 312)

{—(k41)ve—0 leyg=1 t>(k4-1)t44-0

(Note 3.2. The method described for smoothing the optimal problem
lends itself to the application of one of the direct methods for solu-
tion in variational problems, for example, the method of fastest descent
for calculation of optimum control. The situation is analogous to that
occurring in solutions by direct methods of the known optimal problems
(see for example [5,6,14 ]). However, it should be noted, that in mini-
mizing the functional (3.6) the resulting computational difficulties are
quite considerable.

Verification of the existence of a permissible and optimal control and
the construction of optimum control in concrete cases is difficult. The

* It may be considered that this discontinuity is defined by terms of
the 8-function type in the right hand side of (3.10), corresponding
to the transfer matrix n; » 7.. For the case of continuous process
n(t), this fact causes the corresponding appearance of the continuous
members in the right hand side of (3.10). It is worth noting that the
appearance of d(t) in (3.10) is due here to the introduction of £ and
tor 02 + 0 function d(t) » 0 outside the neighborhood of point x = O.
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possibility of applying the method of Liapunov functions is investigated
in the following section [1,2,15 1. The application of this method to
control problems was developed by Chetaev. In particular, the problem of
parameter selection in a stable system for optimum high speed response
was solved for linear systems by Chetaev in References [ 2,15 ] based on
Liapunov quadratic form functions. In addition, Reference [15] derived
concrete evaluations of decay times for transient processes up to the
given quantity ¢ > 0 based on the characteristic numbers of the Liapunov
function v of quadratic form and its derivative dv/dt, on the strength of
the equations for a disturbed motion.)

4. Application of the method of Liapunov functions to the
optimal problem. In this section a generalization of Liapunov functions
is described which permits the application of these functions as appa-
ratus for the investigation of high-speed response problems in control
systems, including the presence of random disturbances. The application
of the second method of Liapunov to problems of system response in the
absence of random disturbances is described in Reference [ 9 ]. Note that
the surfaces of the optimum level of Liapunov functions considered in
Reference [ 9] are apparently isochronisms in the sense of Reference
[16 1. The author considers it his duty to point out that the discussions
given in this section overlap in some essential respects with the re-
searches of Repin, who has worked out a method for solving optimal
problems on the basis of the methods of dynamic programming and derived
a general partial differential equation for the minimizing functional.

Let us first introduce a number of definitions corresponding in our
case to the classical definitions of the second method of Liapunov [1,2].

We will consider functions v(x, 7, t) of coordinates xi(i =1, ...,n)

for a random value  and time ¢, not assuming them to be continuous for
all arguments.

Definitions 4.1. We will call the function v(x, 5, t) positive de-

finite in region G x H for t > t,, if the following condition is satis-
fied

v(z,,t) >0 for z&=G, 250, n=H, t>1, (4.1)

4.2. The function v(x, n, t) admits an infinitely small higher limit
(in Gx H for ¢t » ty), if there is a constant L satisfying the condition

vz, ) Liz]  for ze=G, 20, H, t >4, (4.2)
4.3. In substituting in v(x, 5, t) for x; and 7, the coordinates

z,(t), the solution of system (1.1) (corresponding to some control
UilorU,) and the values of the random function n(t), one obtains the
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random functions of time v(t). Let us assume that for the mathematical
expectancy M{ v (t)} of this function one can compute the right deriva-
tive M{ vl.

We will say that the function v(x, 7, t) has a negative definite
derivative dM{ v} /dt (in the region G x H for t > t;), if the inequality

dM v} /dt < —38 for ze=G6, &= H, 1>, (3 = const > 0) (4.3)
is satisfied and if (4.3) can be integrated, i.e.,
M{p(t)} —M{o ()} < —3 (t—1t,) (t=ty) (4.4)

The last restriction is necessary, since some more general functions
are allowed as Liapunov functions v(x,7, t) and solutions x(t¢) than
those from the classical cases of the Liapunov theory.

4.4. The function v(x, 7, t) satisfying the conditions of 4.1 to 4.3.
we shall call the generalized Liapunov function (in the corresponding
region).

(Notes 4.1. In this section we will consider only optimal problems
fore =0, k=n, 6=} — o< xi < =}, According to Note 1.3, each
realization of the trajectory x(t) is defined by the given control Ut(or
U,) only for = # 0 (for ¢ = 0), and after reaching the point s = 0 for
t= t* we have x(t) = 0. Accordingly, we will assume that for x = 0
Liapunov functions are not defined and that each realization of the func-
tion »(t) after reaching the corresponding realization of solution x(t)
at point x = 0 is continued in such a wanner that dv/dt = —1.

4.2, In what follows we will consider only those cases when the random
solutions x(t) of system (1.1) have for all t > ty 8 finite dispersion
uniformly bounded at t > ty. In consequence of (2.3) this condition is
satisfied, for example, if functions n(t) and ul t,ry] possess a finite
dispersion uniformly bounded for t > to).

Lemma 4.1. 1f for a given control U,(or U,) for the system (1.1) we
can give a generalized Liapunov function v(x, 7, t), then the control
U'(or U‘) is permissible.*

Proof. Due to imposed conditions, x(t) has bounded dispersion. Conse-
quently, v(¢t) due to the infinitely small higher limit (4.2) will also
have a bounded dispersion D(t) < D = const. for all t > t,. Because

* See Note 1.2. The control U, is here assumed such that Le(n), ()}
is a random process without after-effects.
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v(x, n, t) is positive definite (4.1), the probability p[t] of inequal-
ity x(t) #£ 0 coincides with the probability of inequality v(t) > 0. From
the condition (4.4) according to Chebyshev’s inequality [7] (p. 187) we
conclude now that the probability p[ t] is of the order 1/t2 for ¢t » .
This proves the convergence of integral (1.3).

Definition 4.5. The generalized Liapunov function v°{(x, 5, t) will be
called optimal if the condition is satisfied that

mgn dM {(v°} jdt = —1 (4.5)

at each point x,  {(or correspondingly at each instant ¢t of the control
process).

Theorem 4.1. Let system (1.1) possess an optimal control U° (for US
for all initial conditions x, 5, t > to). Then the positive definite
function v(x, 5, t) =TI U, n, 0, x, n, t] satisfies (4.5), whereupon
the minimm is reached on the optimum control U g (or upe ).

Proof. Compute dM{v}/dt for the function v = T[U®] at optimum
control U° (at the point x = x, 7 = Mg t= tg). Quantivy pl U, &, ¢,
x(tg+r), 9ty +7), tg+r, t] for fixed U and for constant t > tog+ 7
is a random function r, the statistical properties of which are deter-
mined by z(t) and 5(¢t). By definition of M{ v (¢t)} we have

M{v(t, + A1) —{v(t)}} =

=M { S PIU, 1,0,z (t, -+ At), g (t, - At), ¢, + At,t]dt}——

te-1-At

piU,n,0, Zgs To» Lo E] dt

.“ma

and in view of the known properties of the random processes without after
effects [7] we have

M{ §° plU,n,0, z(t, + At), n(t, + At), t, + At, t]dt} =
,+aAt
' = S PIU, 1,0, 2,0, t,, t1dt
1.e, t, At
[++]
(259, = G [ pvm0mum i), <~ o

i

since when z, £ 0 on some sufficiently small interval (t,, t, + At)
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limp(U,n,0, zy,n,, t,,t] = 1 npu At —0

Let us assume now that for some permissible control U at separate
times of control dM{v} /dt, < — 1. Then on some interval At the in-
equality M{v (¢, + At)} — Mlv (¢g)} <~ At would be satisfied which in
consequence of (4.6) contradicts the assumption regarding the optimum
of control U°.

The obtained contradiction along with the equality (4.6) proves the
theorem.

Theorem 4.2. Let there be given a generalized optimal v(x, y, t)
Liapunov function for system (1.1). If for some control U°(US or U,°)
this function satisfies the condition di°/dt = —1 = min, then this
control U° is optimal.

Proof. According to Lemma 4.1 the control U° is permissible. Let us
assume the contrary, namely, that this control U° is not optimal, and
consequently there is a permissible control U* for which

TIU") < T (0% (4.7)

at least for one point ZgiMgr tos whereby

<‘%f”’)v > 1 (4.8)

Let us consider the process of control under the given initial con-
ditions x, 7,, t,, and let us denote by v, and v,°* the corresponding
mathematical expectancies (computed at t = t,) of the random functions
' (t) and v°*(t), corresponding to controls U° and U*, for those values
x(¢) and x*(¢t) for which +°(¢) > 0 and »**(¢) > 0. From conditions
(dM{+*} /dt)yo= -1 and dv®/dt = -1 at x = 0, and also from (4.8) follow
the conditions

dv,° o

(—&—t__>dt=+o = —pIU° n,0, 2, My, Lo, ¢} (4.9)
dv,**

(7‘) a:=+o> —plU* n, 0,47, t]

(We assume that these derivatives are meaningful and that relations (4.9)
are integrable).

From conditions (4.9) it follows that

T [U°] = v° (t,), T U*]>0°(t,) (4.10)
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which contradict (4.7).

Theorems 4.1 and 4.2 indicate the application of the second method of
Liapunov to optimal problems. It should be noted, however, than an
effective construction of the optimm Liapunov function v(x, 5, t) is
difficult, If one assumes that in the neighborhood of some point x, 7, t
the function v is differentiable with respect to x; and t, then condition
(4.5) leads to a partial differential equation which must be satisfied
by the generalized Liapunov function. For example, if the random function
7(t) assumes m values n,, ..., 7,, satisfying the limitation (2.2) where-
by the probability p ].(At) of the transformation n} » r,j(l # j) on the
interval (¢, t + At ; is determined by the conditions

pi; (At) = pi;At 4 o (A2) (pyj = const) (4.11)
then condition (4.5) leads to the equalities

n

S et :
min [ 2 Laa%" [ 2 (g + bijug) + Cm’] THET w1

i=1 j=1

+ 2 Plk[v°(x,"lk,t)'—v°($,'fu,t)]]="‘1 npr fu<1 (=1 ....m)
K+l
which can be considered as a system of m equations for m functions v; =
wix, 3 I t). The difficulty of defining v ; 1is connected, in particular,
with the circumstance that it is required to find positive definite
solutions v; of the sysgem (4.12) for x £ 0.

In Section 5 we will consider- a case when the solution of the problem
is facilitated by the fact that the optimal function +°(x, 5, t) does
not depend explicitly on ;. In Section 6 an approximate graphical method
for constructing functions v°(x, 5, t) for a second order system is

described.

5. Optimal control for the case of white noise at system
input. Let the random function (t) describe white noise which we shall
assume realized as a limiting case of a shot effect (random impulses
with dispersion a? and mean density v distributed an axis t) for v - e
and a®v = y = const [6]. Assume that M {5 (¢t)} = 0. Since the considered
random process n{(t) is white noise, the informatien about past realiza-
tion of the signal does not play a role in the choice of control for the
future, i.e. at each instant t and point x(t) the U, should be chosen by
t;}(le‘same rule as the optimal control in the absence of a random signal
n(t,.

Let us consider the application of Liapunov functions for this case.
Let matrix B in system (1.1) not be singular. It was shown in Reference
[9] that in this case for n = 0 there exists an optimal function of
Liapunov +°(x), defined for all x and possessing for x £ 0 continuous
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partial derivatives. (In Reference [9] condition (4.2) is not proved
for +* (x) but this condition can be verified here). The optimum control
U°, corresponds to the function v° (x). If one computes dM{ v°} /dt for
the function +°(x), then, on the strength of system (1.1), in the pre-
sence of a random signal n(t) and permissible control U, we will have

dM {v°} av°
a3, 9% =+ bius] -+
( ) i=1, J—1ax‘ ™ i) (5.1)

+ i [ 5 M (@ ¢+ M) —o 2 (t+ AD)) |

where x,’(t) is the random function x(t) (1.1), generated by random n(t)
and u(t ).

The first sum is of the same form as in the case of y(t) = 0, Utiliz-
ing the properties of a shot effect, passed through a linear filter
(L.1)[61], the equality M{n(t)} = 0 as well as property (4.2) and the
ability of continuous differentiation of v°(x), we can verify that the
second sum on the right-hand side of (5.1) is equal to zero.

6. In this section an approximate graphical method is described for
constructing an optimal Liapunov function v(x, y) for a second order
system (x, y-scalars). We shall follow the geometrical interpretation of
the Liapunov function indicated by Chetaev.

Let us consider the second order system
d;
d—z =py+ (1 —Wuy, F=—p@r+ay)+u @) (6.9)

corresponding to the optimal problem for equation
X - ayx + agr == u; + % (1) (6.2)

under conditions
[u, <1 for p=1 6.3y

Consider only the case when n(t) can assume two values m and n,, and
the probability p;;(n, » n; .) on the interval (¢, t + At ) is of the form:
PIj= pAt + O(Atf(p = const).

Assume that the optimal generalized function v°(x, 7, pu) depends con-
tinuously on the parameter y. In Reference [9 ], the continuous depend-
ence of v° on p is proved for » = 0. Here we take this fact as a hypo-
thesis. This is sensible, since in the course of construction the
generalized Liapunov function v is obtained in any case such that it
ensures the passing of the trajectory through the point x = y = 0 with
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large probability for large t (see Lemma 4.1). The sufficiency of the
obtained response can be verified by the specific conditions of the
problem.

Let us describe the construction of function 1. Divide the interval
0<p<1inton parts at points py = 0, g}, .oo, p, =1 For gy =0
values v°(x, y, n,, iy) and +*(x, y, 75, py) coincide and the level lines
for function +*(x, y, 7, py) are constructed by elementary means (see

[91).

Assume that on the surface xy in region D of possible deviations x,
y, there are constructed level lines for functions v°(x, y, 5,, p;) and
*(x, ¥, 1, p.i). Let these level lines be constructed for values +° =
const = kry, where o is a sufficiently small positive constant k = 1,
2, ... Assume also that for function +*(x, y, n,, p;, ) there are con-
structed level lines* +* =jr (j = 1, ..., m). We will describe the con-
struction of level lines for

v° (=, ¥, My P‘H—l) = (m + 1) %o

If it is assumed that the function *(x, y, n,, By 1) in the
neighborhood of point (x, y) is differentiable, then according to (4.12),
at this point the following conditions must be satisfied

(48, = o o+ O+ s

+ay —m) + u1] + p[2° (2, Y, Moy ita) — 7 (2, Yy s m+1)l] =—1 (6.4)

We shall assume, in accordance with out hypothesis, that a small
change Ap =p,; | — p, causes a small change in +°. Having chosen a point
X9, Yo on the line +°(x, y, y,, p;, ;) it is possible to obtain a point
xy, ¥;, located on the line +*(x, y, 7,, Biy )= (m+ Dry. The co-
ordinates x,, y, are computed from

x, = 2, + Az, 1=y, + Ay, (6.5)
where
Azy = — 7y (Rip1 Yo + (1 — pipa)u,")/B
Ay = — 7o (— i1 (@27 + a1y — M) + u,°)/B (6.6)
=—1—plv* @ Yoo Mar ) —2°(Z0s Yor M1y i)
. o

Level lines for +° = 7, for all +° may be constructed assuming z =

y = 0 on the right-hand side of system (6.1) and neglecting the trans-
formation of 7. Then the problem of line construction v = 7o 1s solved
elementarily.



100 N.N. Krasovskii

and numbers u,° and u,° are chosen by the condition that the scalar pro-
duct of vectors {u)°, u,’(1 - p.)} and {9v°(xy, ¥y 7y, p;)/dy, 9v°(x,,
Yor M, “i)/ax} at point Xgs ¥y 1s a minimum with respect to u; and u,,
"12 + "22 < 1. Having chosen a sufficiently large number of points (x,,
¥o) on the curve +° = mr,, we shall obtain by this means sufficiently
many points (x;, y,,)€{+° = (m+ 1)r }. Connecting these points by a
smooth curve, we will obtain* the line +° = (m + 1)r ;. Upon construction
of the necessary number of level lines of v°(x, y, 5, “i+—1) one can
analogously construct the level lines for +°(x, y, 5,, M;4 1) = const,
Then we proceed to the construction of level lines for v°z;, Y My )
and +° (2, y, N4, #) for p = m+ 2 etc. up to the value p = p, = 1. This
concludes the construction of level lines for +° (x, y, ”1'1) and ° (x,
¥» 13, 1) on the surface xy. Having obtained the plot of these level
lines, one can construct the switching line for the control function
ul(t). Indeed, we will assume that the level lines for +°(x, vy, N1 1)
are constructed on the first sheet of x, y surface, and the level lines
for 1°(v, y, 1,5, 1) on a second one. The curves on each sheet, connect-
ing the points where the tangent to the level lines is parallel to axis
Oy, will be the curves of switching: function ul(x, y) will change sign
only in passing through these curves (on a given sheet i.e., for given
7 =1n;(I=1, 2)). Function u,(t) will also change sign during the
change of values 5, when the representing point (x, y) passes from one
sheet of surface xy to another one, whereby the surfaces xy on the
various sheets correspond to this point in the regions of different
signs of function u.
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